a new inexact inverse subspace iteration for generalized eigenvalue problems

نویسندگان

m amirfakhrian

department of mathematics, islamic azad university, central tehran branch, po. code 14168-94351, iran. f mohammad

department of mathematics, islamic azad university, central tehran branch, po. code 14168-94351, iran.

چکیده

in this paper, we represent an inexact inverse subspace iteration method for com- puting a few eigenpairs of the generalized eigenvalue problem ax = bx[q. ye and p. zhang, inexact inverse subspace iteration for generalized eigenvalue problems, linear algebra and its application, 434 (2011) 1697-1715 ]. in particular, the linear convergence property of the inverse subspace iteration is preserved.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

An inexact inverse iteration for large sparse eigenvalue problems

In this paper, we propose an inexact inverse iteration method for the computation of the eigenvalue with the smallest modulus and its associated eigenvector for a large sparse matrix. The linear systems of the traditional inverse iteration are solved with accuracy that depends on the eigenvalue with the second smallest modulus and iteration numbers. We prove that this approach preserves the lin...

متن کامل

Fast inexact subspace iteration for generalized eigenvalue problems with spectral transformation

We study inexact subspace iteration for solving generalized non-Hermitian eigenvalue problems with spectral transformation, with focus on a few strategies that help accelerate preconditioned iterative solution of the linear systems of equations arising in this context. We provide new insights into a special type of preconditioner with “tuning” that has been studied for this algorithm applied to...

متن کامل

Inexact Inverse Subspace Iteration with Preconditioning Applied to Non-Hermitian Eigenvalue Problems

Convergence results are provided for inexact inverse subspace iteration applied to the problem of finding the invariant subspace associated with a small number of eigenvalues of a large sparse matrix. These results are illustrated by the use of block-GMRES as the iterative solver. The costs of the inexact solves are measured by the number of inner iterations needed by the iterative solver at ea...

متن کامل

Inexact Inverse Iterations for the Generalized Eigenvalue Problems

In this paper, we study an inexact inverse iteration with inner-outer iterations for solving the generalized eigenvalue problem Ax = Bx; and analyze how the accuracy in the inner iterations aaects the convergence of the outer iterations. By considering a special stopping criterion depending on a threshold parameter, we show that the outer iteration converges linearly with the threshold paramete...

متن کامل

Inexact Numerical Methods for Inverse Eigenvalue Problems

In this paper, we survey some of the latest development in using inexact Newton-like methods for solving inverse eigenvalue problems. These methods require the solutions of nonsymmetric and large linear systems. One can solve the approximate Jacobian equation by iterative methods. However, iterative methods usually oversolve the problem in the sense that they require far more (inner) iterations...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
journal of linear and topological algebra (jlta)

جلد ۱، شماره ۰۲، صفحات ۹۷-۱۱۳

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023